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Abstract

We show how the motion of free material test particles in arbitrary spatial flows is

easily determined within the context of ordinary vector calculus.  This may be useful for

everyone, including engineers and nonspecialists, when thinking about gravitational

problems.  It already has valid application to simple problems such as the problems of

motion in rotating and accelerating frames and to the gravitational problem of the single

spherically symmetric attractor.  When applied to the two body gravitational problem, it

may help us determine the actual direction of the flow.

Introduction

In a recent publication [1], we discussed the possibility that Nature might prefer non-

static and spatially flowing type solutions of the gravitational field equations rather than

the usual static and spatially curved type solutions.  In the case of the two body

gravitational problem of the Earth-Sun system, we discovered that there is a very strong

gravitational time dilation effect near the gravitational saddle point which can be utilized,

experimentally, to distinguish the physical reality of the two possible types of solution.

It is our intention in the present paper to show how the equations of motion of free

material test particles in arbitrary spatial flows can be easily determined within the

context of ordinary vector calculus.  This obviates the need to introduce the usual

complication of covariant differentiation with its associated Christoffel symbols and

affine parameters. The resulting General Relativistic equations of motion already have

valid application to simple problems such as the problems of motion in rotating and
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accelerating frames of reference and to the gravitational problem of the single spherically

symmetric attractor.  When applied to the two body gravitational problem, they may help

us determine the actual direction of the flow.

1.  Space-time with Spatial Flow

When space-time is characterized by a flow of physical space, there exists a global

Galilean coordinate frame },{ tr  in which the flow is represented by a 3-space vector field

),( trww ≡ .  This flow of space is a generalization of Newton's concept of absolute

space in which no part of space is moving with respect to any other part (Newton's

absolute space corresponds to the case in which there is a Galilean frame in which 0w ≡
everywhere).  In these Galilean coordinates, the proper time element of an atomic clock is

given by

dtcudtd 221 /1−≡= −γτ   ,                                      (1-1)

where

wvu −≡         .                                              (1-2)

Here, τ  is the proper time of the clock, c  is the coordinate speed of light in physical

space (a constant), t  is the coordinate time, r  is the coordinate position vector of the

clock, dtd /rv ≡  is the coordinate velocity of the clock, and u  is the coordinate velocity

of the clock relative to physical space.

From the above equations, we see that the space-time line element is

222222 )(2)( rrw ddtddtwcdc −⋅+−=τ                                (1-3)

in these Galilean coordinates.  Furthermore, the total time dilation of a clock in motion

with velocity v  (we restrict cu < )  in an arbitrary spatial flow  w  is given by

dtcwvd 222 /)2(1 wv ⋅−+−=τ  .                                  (1-4)
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We have shown in reference [1] that these Galilean coordinates are perfectly

acceptable coordinates for studying  1) the General Relativistic problem of the rotating

frame in flat space-time and  2) the General Relativistic problem of the single spherically

symmetric attractor.  Thus, the equations of motion obtained in the following two

Sections are applicable to these canonical cases as well as to many others.

2.  The Equations of Motion

The path of a free material test particle in General Relativity is one over which the

integral of the particle's proper time is an extremum:

∫ = 0τδ d   .                                                    (2-1)

The path is obtained from the associated Euler-Lagrange equations.  In Galilean

coordinates with spatial flow w ,  the calculation of the path is simplified by using the

coordinate time t  as the path parameter.  This reduces the number of Euler-Lagrange

equations from four (involving the space-time coordinates) to three (involving the spatial

coordinates). From (1-1), we have

0)( 2/1221 =−= ∫∫ − dtuccd δτδ   .                                  (2-2)

Let us perform the calculation in rectangular Galilean coordinates },,,{ tzyx  with the

orthonormal spatial basis }ˆ,ˆ,ˆ{ zyx eee .  The Euler-Lagrange equations are

rv ∂
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d
     ,                                             (2-3)

where

12/121 )();,( −− =⋅−== γuuvr cctLL                                (2-4)

is the Lagrangian, and
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In this Euler-Lagrange formalism, r and v are treated as independent variables.

)(tvv ≡  is a parametric vector, while ),( trww ≡  is a vector field.  Thus,

wgradwvgradugrad −=−= )(  ,                                 (2-7)

where
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is the tensor characterizing the spatial inhomogeneity of the flow w .

From (2-7), we have

uwgraduugraduugrad ⋅=⋅−=⋅− )(2)(2)( ,

hence

uwgraduugraduugrad
r

⋅=⋅−=⋅−=
∂
∂ −−−−− )()(

2

1
)( 212212/121 cLccLcc
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Setting 22 γ=−L  (from (2-4)), we see that our Euler-Lagrange equations (2-3) are

uwgradu
u

u
u

⋅−=





 ⋅+ )(

2

2

dt

d

cdt

d γ
 .                             (2-9)

Taking the scalar product of this equation with u ,  we get

uuwgraduu
u

uu
u

⋅⋅−=⋅





 ⋅+⋅ ))(()(

2

2

dt

d

cdt

d γ
  .                 (2-10)

Since )1( 22 −−=⋅ γcuu ,  (2-10) becomes

uuwgradu
u

⋅⋅−=⋅ ))((2

dt

d
γ      .                              (2-11)

Substituting this back into (2-9), we find that

uuuwgraduwgrad
u

)))(((
1

)(
2

⋅⋅+⋅−=
cdt

d
    .                (2-12a)

We can write this more formally as

0uwgraduu
u 1 =⋅⋅−+ )())/1(( 2c

dt

d
   ,                    (2-12b)

where 1   is the identity tensor in 3-space and uu1 )/1( 2c−  is the symmetric tensor of

motion of the test particle.

This is the equation of motion of a free material test particle in Galilean coordinates

with arbitrary spatial flow w .  The equation is fully relativistic (in the sense that the

material test particle may have an arbitrary relativistic speed ( cu <≤0 ) relative to

physical space).
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3.  Beyond Newton

The non-relativistic (slow motion) approximation of the relativistic equation (2-12)

is

uwgrad
u

⋅−= )(
dt

d
  .                                          (3-1a)

In terms of v  and w ,  this is

)()( wvwgrad
wv

−⋅−=−
dt

d

dt

d
  ,                              (3-1b)

where dtd /w  is the derivative of the parametric vector )),(()( ttt rww =  along the path

)(tr  specified by the velocity vector dtd /rv = .  By the chain rule of differentiation,

wwgradv
w

tdt

d
∂+⋅=     .                                      (3-2)

Using the vector identities

vwcurlvwgradwgradv ×=⋅−⋅ )()(                                (3-3)

and
2

2

1
)( wgradwwgrad =⋅      ,                                   (3-4)

we find that

wvwcurlgrad
v

tw
dt

d
∂+×+= )(

2

1 2  .                           (3-5)

To remind ourselves that the acceleration dtd /va ≡  is that of a free material test

particle,  we write this as

wvwcurlgrada tfree w ∂+×+= )(
2

1 2      .                     (3-6)
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The first term on the right-hand side of this equation represents the gravitational and

generalized centrifugal accelerations, the second term represents the generalized Coriolis

acceleration, and the third term is the acceleration arising from an explicit dependence of

the flow on time.

This equation provides us with an easy way to study the problem of motion in

rotating and accelerated frames in ordinary Newtonian mechanics.  We do this  by

focusing on the flows induced by the frame motions.  For example, a rotating Galilean

frame in flat space-time with an axial rotational velocity )(tωωωω ≡ , induces the flow

)(),( tt ωω×= rrw  .                                            (3-7)

More importantly, equation (3-6) has application beyond ordinary Newtonian

mechanics, because it holds for arbitrary flows and not just those induced by the motion

of frames.  An example of a flow that is not induced by the motion of a frame is the flow

associated with a single spherically symmetric gravitational attractor.  In a spherical

Galilean frame centered on the attractor, this is given by one or the other of the flows

rrGM erw ˆ/2)( ±=  ,                                           (3-8)

where G  is the gravitational constant and M  is the mass of the attractor.  As we

discussed in some detail in reference [1], the Principle of General Covariance assures us

that no physical experiment can distinguish between the two flows (3-8) as long as we are

dealing with a single isolated attractor.  However, when a second attractor is present,

there are terms in (3-6) which may help us in designing an experiment to measure the

actual direction of the flow.  We discuss this possibility, at least qualitatively, in the next

Section.

4.  Satellite Motion through the Surface of
Transition of the Earth-Sun System

Suppose a satellite with a stable atomic clock onboard is sent through the region of

the Earth-Sun gravitational saddle point as suggested in reference [1].  If the frequency of
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the clock varies in a way that is consistent with the spatial flow type solution of the two

body problem, we will be justified in studying the details of this flow in other ways.

Let us discuss the Earth-Sun two body flow from the point of view of a non-rotating

Galilean frame centered on the Sun.  In this frame of reference, the Earth and the

gravitational saddle point are orbiting about the Sun.  (We neglect all other planetary

perturbations.)  The flow is quiescent at the saddle point [1], and there will be a surface

of transition between the Earth's spatial flow and the Sun's spatial flow.  In the region of

the saddle point, this hyperboloid-like surface is swept away from the Sun, and it is

moving with the Earth and the saddle point as a boundary between the terrestrial flow and

the solar flow.  It is closest to the Earth where it intersects the saddle point (the saddle

point is about 260,000 km from the Earth).

Consider a point P  on the surface of transition and in the orbital plane at a distance

of several thousand kilometers from the saddle point.  At some, but as yet experimentally

undetermined, small distance into the terrestrial side of the flow from P , the terrestrial

flow will be approximately parallel to the transition surface and the orbital plane, and it

will have a speed on the order of ≅= rGmw /2 1.75 km/sec, where m  is the Earth's

mass and r  is the distance from the Earth to the saddle point.  On the solar side of the

flow from P , the solar flow will also be approximately parallel to the transition surface

and the orbital plane, but its speed will be on the order of ≅= RGMw /2   42.2

km/sec, where M  is the solar mass and R  is the distance from the Sun to the saddle

point.

If we send a satellite from the Earth perpendicularly through the surface of transition

at P  and out into the solar flow,  we may be able to study its motion with equation (3-6).

This depends on the nature of the transition between the flows.  There are three

possibilities:  1) the transition is a strict tangential discontinuity of the flow,  2) the

transition is turbulent flow,  or  3)  the transition is a smoothly varying flow.  We can

apply equation (3-6) with confidence only to the third case.

Suppose, for the sake of argument, that the flow is smoothly varying through the

transition.  In view of the differences of the flows on either side of P  as estimated above,

the term 2)2/1( wgrad  would give the satellite an acceleration in its forward direction,

while the terms vwcurl ×)(  and wt∂  would give the satellite accelerations in the
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direction of the solar flow.  So, in the case of a smoothly varying transition, it is possible,

in principle, to determine the actual direction of the flow.

[1] Martin, T. (1998),  Testing the Boundary Conditions of General Relativity Near the
Earth-Sun Saddle Point, http://xxx.lanl.gov/ftp/gr-qc/papers/9806/9806033.pdf


